This work proposes a feature-based probabilistic data association and tracking approach (FBPDATA) for multi-object tracking. FBPDATA is based on re-identification and tracking of individual video image points (feature points) and aims at solving the problems of partial, split (fragmented), bloated or missed detections, which are due to sensory or algorithmic restrictions, limited field of view of the sensors, as well as occlusion situations.
This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.