Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Die von Cauchy 1814 begriindete Theorie der Funktionen einer komplexen Veranderlichen z= x+yi geht von gewissen Eigenschaften einer FunktionJ(z)= u(x, y);t-v(x, y)i aus, um daraus ihren analytischen Charakter, d. h. ihre Darstellung durch gewohnliche Potenzreihen, zu gewinnen. Wahrend aber Ca uch y dazu die Existenz und Stetigkeit der Ableitung J'(z) brauchte, bewiell Goursat 1900, daB auf die Stetigkeit, von!, (z) verzichtet werden kann. In der vorliegenden Schrift wid auch die Existenz vonI' (z) noch ausgellchahet und durch eine vielschwachere, aber unentbehrliche Bindung zwischen u und v ersetzt, um u+vi zu eincr analytischen Funktion von z zu machen. So wird hier ein Wun'sch erfiillt, in dem sich BoIza, wie er dem Verfasser erzahlte, 1912 in London mit Hil bert begegnete, daB namlich auch die Existenz von I' (z) durch gering ere Voraussetzungen ersetzt werden sollte. Diese ganze, n-unmehr abgeschlossene Entwicklung ist also reif fUr eine einheitliche selbstandige Darstellung, die zugleich eine Geschichte der Begriindung der Funktionen- theorie ist. Nur 110 kommen auch die einzelrien Schritte, zumal der letzte hier von uns getane zur reohten Gehung. Diese Darstellung braucht den, iibrigens auch fiir Physik und Technik wichtigen Begriff des reellen und dam it des komplexen Kurvenintegrals, weil er in den alteren Arbeiten iiber den "Cauchyschen Integralsatz" cine bed utende Rolle spielt und bei uns erst nachtraglich sich fur die Begriindung der Funktionentheorie als viillig entbehrlich erweist. Die De- finition solcher Integrale, mit der wir deshalb beg inn en miis en, kann .