Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This investigation presents a formulation of hypo- elasticity based RC beam /frame model with bond- slip. Details of the constitutive model and analysis method used are provided. A procedure has been described to carry out three-dimensional analysis considering both geometrical as well as material nonlinearity for simply supported RC beams and substitute frames employing finite element technique, which uses 8-noded isoparametric hexahedral element HCiS18. Enhanced assumed strain (EAS) formulation has been utilized to predict load- deformation and internal stresses both in the elastic as well as nonlinear regime. It models the composite behaviour of concrete and reinforcements in rigid /perfect bond situation and their mutual interaction in bond-slip condition considering continuous interface elements at the material level. An attempt has been made to reduce the gap significantly between the results found experimentally and numerically using the proposed model and the computer code developed for the purpose. The results of the analysis are presented, discussed and compared with a few benchmark experimental results.