Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This research investigation addresses the problem of routing and simulating swarms of UAVs. Sorties are modeled as instantiations of the NP-Complete Vehicle Routing Problem, and this work uses genetic algorithms (GAs) to provide a fast and robust algorithm for a priori and dynamic routing applications. Swarms of UAVs are modeled based on extensions of Reynolds' swarm research and are simulated on a Beowulf cluster as a parallel computing application using the Synchronous Environment for Emulation and Discrete Event Simulation (SPEEDES). In a test suite, standard measures such as benchmark problems, best published results, and parallel metrics are used as performance measures. The GA consistently provides efficient and effective results for a variety of VRP benchmarks. Analysis of the solution quality over time verifies that the GA exponentially improves solution quality and is robust to changing search landscapes making it an ideal tool for employment in UAV routing applications. Parallel computing metrics calculated from the results of a PDES show that consistent speedup (almost linear in many cases) can be obtained using SPEEDES as the communication library for this UAV routing application. Results from the routing application and parallel simulation are synthesized to produce a more advanced model for routing UAVs.