Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Hilbert space theory is an invaluable mathematical tool in numerous signal processing and systems theory applications. Hilbert spaces satisfying certain additional properties are known as Reproducing Kernel Hilbert Spaces (RKHSs). This primer gives a gentle and novel introduction to RKHS theory. It also presents several classical applications. It concludes by focusing on recent developments in the machine learning literature concerning embeddings of random variables. Parenthetical remarks are used to provide greater technical detail, which some readers may welcome, but they may be ignored without compromising the cohesion of the primer. Proofs are there for those wishing to gain experience at working with RKHSs; simple proofs are preferred to short, clever, but otherwise uninformative proofs. Italicised comments appearing in proofs provide intuition or orientation or both. A Primer on Reproducing Kernel Hilbert Spaces empowers readers to recognize when and how RKHS theory can profit them in their own work.