•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Adaptive Representations for Reinforcement Learning

Shimon Whiteson
Livre relié | Anglais | Studies in Computational Intelligence | n° 291
105,45 €
+ 210 points
Format
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own representations have the potential to dramatically improve performance. This book introduces two novel approaches for automatically discovering high-performing representations.The first approach synthesizes temporal difference methods, the traditional approach to reinforcement learning, with evolutionary methods, which can learn representations for a broad class ofoptimization problems. This synthesis is accomplished by customizing evolutionarymethods to the on-line nature of reinforcement learning and using them to evolve representations for value function approximators.The second approach automatically learns representations based on piecewise-constant approximations of value functions. It begins with coarse representations and gradually refines them during learning, analyzing the current policy and value function to deduce the best refinements.This book also introduces a novel method for devising input representations. This method addresses the feature selection problem by extending an algorithm that evolves the topology and weights of neural networks such that it evolves their inputs too.In addition to introducing these new methods, this book presents extensive empirical results in multiple domains demonstrating that these techniques can substantially improve performance over methodswith manual representations.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
116
Langue:
Anglais
Collection :
Tome:
n° 291

Caractéristiques

EAN:
9783642139314
Date de parution :
05-10-10
Format:
Livre relié
Format numérique:
Ongenaaid / garenloos gebonden
Dimensions :
155 mm x 234 mm
Poids :
340 g

Les avis