•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Adaptive Stream Mining

Pattern Learning and Mining from Evolving Data Streams

A Bifet
130,95 €
+ 261 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book is a significant contribution to the subject of mining time-changing data streams and addresses the design of learning algorithms for this purpose. It introduces new contributions on several different aspects of the problem, identifying research opportunities and increasing the scope for applications. It also includes an in-depth study of stream mining and a theoretical analysis of proposed methods and algorithms. The first section is concerned with the use of an adaptive sliding window algorithm (ADWIN). Since this has rigorous performance guarantees, using it in place of counters or accumulators, it offers the possibility of extending such guarantees to learning and mining algorithms not initially designed for drifting data. Testing with several methods, including Naïve Bayes, clustering, decision trees and ensemble methods, is discussed as well. The second part of the book describes a formal study of connected acyclic graphs, or 'trees', from the point of view of closure-based mining, presenting efficient algorithms for subtree testing and for mining ordered and unordered frequent closed trees. Lastly, a general methodology to identify closed patterns in a data stream is outlined. This is applied to develop an incremental method, a sliding-window based method, and a method that mines closed trees adaptively from data streams. These are used to introduce classification methods for tree data streams.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
226
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781607500902
Date de parution :
02-05-10
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
156 mm x 234 mm
Poids :
494 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.