Preface.- Introduction.- Complex analysis in C.- Riemann Surfaces and the L2 \delta-Method for Scalar-Valued Forms.- The L2 \delta-Method in a Holomorphic Line Bundle.- Compact Riemann Surfaces.- Uniformization and Embedding of Riemann Surfaces.-Holomorphic Structures on Topological Surfaces.- Background Material on Analysis in Rn and Hilbert Space Theory.- Background Material on Linear Algebra.- Background Material on Manifolds.- Background Material on Fundamental Groups, Covering Spaces, and (Co)homology.- Background Material on Sobolev Spaces and Regularity.- References.- Notation Index.- Subject Index.