Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Statistiques
  7. Application of Regularized Regressions to Identify Novel Predictors in Clinical Research

Application of Regularized Regressions to Identify Novel Predictors in Clinical Research

Ton J Cleophas, Aeilko H Zwinderman
Livre relié | Anglais
158,45 €
+ 316 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This textbook is an important novel menu for multiple variables regression entitled "regularized regression". It is a must have for identifying unidentified leading factors. Also, you get fitted parameters for your overfitted data. Finally, there is no more need for commonly misunderstood p-values. Instead, the regression coefficient, R-value, as reported from a regression line has been applied as the key predictive estimator of the regression study. With simple one by one variable regression it is no wider than -1 to +1. With multiple variables regression it can easily get > +1 or < -1. This means we have a seriously flawed regression model, mostly due to collinearity or non-linear data. Completing the analysis will lead to overfitting, and thus a meaningless significant study due to data spread wider than compatible with random. In order for the regression coefficients to remain in the right size, fortunately a shrinking procedure has been invented.

In the past two decades regularized regression has become a major topic of research, particularly with high dimensional data. Yet, the method is pretty new and infrequently used in real-data analysis. Its performance as compared to traditional null hypothesis testing has to be confirmed by prospective comparisons. Most studies published to date are of a theoretical nature involving statistical modeling and simulation studies. The journals Nature and Science published 19 and 10 papers of this sort in the past 8 years. The current edition will for the first time systematically test regularized regression against traditional regression analysis in 20 clinical data examples.

The edition is also a textbook and tutorial for medical and healthcare students as well as recollection bench and help desk for professionals. Each chapter can be studied as a standalone, and, using, real as well as hypothesized data, it tests the performance of the novel methodology against traditional regressions. Step by step analyses of 20 data files are included for self-assessment. The authors are well qualified in their field. Professor Zwinderman is past-president of the International Society of Biostatistics and Professor Cleophas is past-president of the American College of Angiology. The authors have been working together for 25 years and their research can be characterized as a continued effort to demonstrate that clinical data analysis is a discipline at the interface of biology and mathematics.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
273
Langue:
Anglais

Caractéristiques

EAN:
9783031722462
Date de parution :
26-01-25
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
155 mm x 235 mm
Poids :
595 g

Les avis