Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The following monograph deals with the approximate stochastic behavior of a system consisting of a sequence of servers in series with finite storage between consecutive servers. The methods employ deterministic queueing and diffusion approximations which are valid under conditions in which the storages and the queue lengths are typically large compared with 1. One can disregard the fact that the customer counts must be integer valued and treat the queue as if it were a (stochastic) continuous fluid. In these approximations, it is not necessary to describe the detailed probability distribution of service times; it suffices simply to specify the rate of service and the variance rate (the variance of the number served per unit time). Specifically, customers are considered to originate from an infinite reservoir. They first pass through a server with service rate O' vari- ance rate O' into a storage of finite capacity c . They then pass l through a server with service rate l' variance rate l' into a storage of capacity c ' etc., until finally, after passing through an nth server, 2 they go into an infinite reservoir (disappear). If any jth storage become, n, the service at the j-lth server is interrupted full j = 1, 2, and, of course, if a jth storage becomes empty the jth server is inter- rupted; otherwise, services work at their maximum rate.