Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This book presents the application of machine learning and deep learning to Materials Design. Traditional materials design relies on a trial and error based iterative approach towards attaining target material properties often interspersed with accidental discoveries. This approach is very time consuming as both processing/fabrication, characterization of new compositions/structures are quite laborious. The field of machine learning and deep learning can greatly benefit expediting this approach by narrowing down the search space and reducing the number of compounds/structures that are explored in the lab. This book covers the fundamentals of how one goes about applying Artificial Intelligence to materials design followed by specific examples. The book contains 4 sections. In the first section, fundamentals of AI, materials structure representation/digitization and theoretical framework are discussed. In the second section, materials optimization using evolutionary algorithms is discussed. In the third section, application of AI for forward prediction, i.e., given a material structure, how to predict properties, is considered. In the fourth section, we cover inverse prediction or inverse materials design, that is, predicting materials/structures with target properties. The inverse design of materials is an emerging field of materials design and the techniques we present are very novel. We provide examples from both organic and inorganic materials space with diverse fields of applications. The book includes sample codes for these example problems to help readers gain hands-on experience.