Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. In Book I, we focus on preliminaries. Chapter 1 provides an introduction to multivariable calculus and treats the Inverse Function Theorem, Implicit Function Theorem, the theory of the Riemann Integral, and the Change of Variable Theorem. Chapter 2 treats smooth manifolds, the tangent and cotangent bundles, and Stokes' Theorem. Chapter 3 is an introduction to Riemannian geometry. The Levi-Civita connection is presented, geodesics introduced, the Jacobi operator is discussed, and the Gauss-Bonnet Theorem is proved. The material is appropriate for an undergraduate course in the subject. We have given some different proofs than those that are classically given and there is some new material in these volumes. For example, the treatment of the Chern-Gauss-Bonnet Theorem for pseudo-Riemannian manifolds with boundary is new. Table of Contents: Preface / Acknowledgments / Basic Notions and Concepts / Manifolds / Riemannian and Pseudo-Riemannian Geometry / Bibliography / Authors' Biographies / Index