Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The knowledge of the system, the data stored, the workload and the inter-dependency between them is a major requirement for tuning a Database Management System (DBMS). Due to complexity of the DBMSs and the diversity of their workload, there is a need for automatic tuning of DBMS. Self-managing (or autonomic) databases are intended to reduce the total cost of ownership by automatically adapting to evolving workloads and environments. To reach this goal, commercial DBMSs have recently been equipped with self-management functions, which support the database administrator (DBA) in identifying the appropriate indexes or in sizing the memory areas. However, existing techniques suffer from several problems: First, they are often implemented as off-line tools that have to be explicitly triggered by a DBA. Second, they strictly focus on automating one particular administration task, without considering possible side-effects on other components. This book defines the automated manner to make the system self tune in variable workload.