Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Due to its wide range of use in human face-related applications, face detection has been considered one of the most important areas of research in computer vision and visual pattern recognition communities. Though current methods perform well on controlled face images, their performance degrades considerably under realistic scenarios that include pose, illumination and blur challenges as well as low-resolution images. This book proposes an efficient approach for detecting faces in uncontrolled imaging conditions using a probabilistic framework based on Hough forests. Hough forests can be regarded as task-adapted codebooks of local appearance that allow fast supervised training and fast matching at test time, codebooks are built upon a pool of heterogeneous local appearance features, a codebook is learned for the face appearance features that models the spatial distribution and appearance of facial parts of the human face. Extensive evaluation of the proposed method on various databases shows the usefulness of the method. We show that the suggested method improves the detection rate and accuracy outperforming the state-of-the-art methods.