Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Technique
  6. Ingénierie & Technologie
  7. Automorphic Forms and the Picard Number of an Elliptic Surface

Automorphic Forms and the Picard Number of an Elliptic Surface

Peter F Stiller
Livre broché | Anglais | Aspects of Mathematics | n° 5
52,95 €
+ 105 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

In studying an algebraic surface E, which we assume is non-singular and projective over the field of complex numbers t, it is natural to study the curves on this surface. In order to do this one introduces various equivalence relations on the group of divisors (cycles of codimension one). One such relation is algebraic equivalence and we denote by NS(E) the group of divisors modulo algebraic equivalence which is called the N ron-Severi group of the surface E. This is known to be a finitely generated abelian group which can be regarded naturally as a subgroup of 2 H (E, Z). The rank of NS(E) will be denoted p and is known as the Picard number of E. 2 Every divisor determines a cohomology class in H(E, E) which is of I type (1,1), that is to say a class in H(E,9!) which can be viewed as a 2 subspace of H(E, E) via the Hodge decomposition. The Hodge Conjecture asserts in general that every rational cohomology class of type (p, p) is algebraic. In our case this is the Lefschetz Theorem on (I, l)-classes: Every cohomology class 2 2 is the class associated to some divisor. Here we are writing H (E, Z) for 2 its image under the natural mapping into H (E, t). Thus NS(E) modulo 2 torsion is Hl(E, n!) n H(E, Z) and th 1 b i f h - p measures e a ge ra c part 0 t e cohomology.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
194
Langue:
Anglais
Collection :
Tome:
n° 5

Caractéristiques

EAN:
9783322907103
Date de parution :
10-11-12
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
290 g

Les avis