Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences humaines & sociales
  5. Sociologie
  6. Bayesian Predictive Inference for Some Linear Models under Student-t Errors

Bayesian Predictive Inference for Some Linear Models under Student-t Errors

Azizur Rahman
Livre broché | Anglais
48,45 €
+ 96 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

In real life often we need to make inferences about the behaviour of the unobserved responses for a model based on the observed responses from the model. Regression models with normal errors are commonly considered in prediction problems. However, when the underlying distributions have heavier tails, the normal errors assumption fails to allow sufficient probability in the tail areas to make allowance for any extreme value or outliers. As well, it cannot deal with the uncorrelated but not independent observations which are common in time series and econometric studies. In such situations, the Student-t errors assumption is appropriate. Traditionally, a number of statis-tical methods such as the classical, structural distribution and structural relations approaches can lead to prediction distributions, the Bayesian approach is more sound in statistical theory. This book, therefore, deals with the derivation problems of prediction distri-butions for some widely used linear models having Student-t errors under the Bayesian approach. Results reveal that our models are robust and the Baye-sian approach is competitive with traditional methods. In perturbation ana-lysis, process control, optimization, classification, discordancy testing, interim analysis, speech recognition, online environmental learning and sampling cur-tailment studies predictive inferences are successfully used.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
88
Langue:
Anglais

Caractéristiques

EAN:
9783639040869
Date de parution :
12-06-08
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
152 mm x 229 mm
Poids :
127 g

Les avis