Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Retrait gratuit dans votre magasin Club
7.000.000 titres dans notre catalogue
Payer en toute sécurité
Toujours un magasin près de chez vous
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
A road traffic participant is a person who directly participates in road traffic, such as vehicle drivers, passengers, pedestrians, or cyclists, however, traffic accidents cause numerous property losses, bodily injuries, and even deaths to them. To bring down the rate of traffic fatalities, the development of the intelligent vehicle is a much-valued technology nowadays. It is of great significance to the decision making and planning of a vehicle if the pedestrians' intentions and future trajectories, as well as those of surrounding vehicles, could be predicted, all in an effort to increase driving safety. Based on the image sequence collected by onboard monocular cameras, we use the Long Short-Term Memory (LSTM) based network with an enhanced attention mechanism to realize the intention and trajectory prediction of pedestrians and surrounding vehicles. However, although the fully automatic driving era still seems far away, human drivers are still a crucial part of the road‒driver‒vehicle system under current circumstances, even dealing with low levels of automatic driving vehicles. Considering that more than 90 percent of fatal traffic accidents were caused by human errors, thus it is meaningful to recognize the secondary task while driving, as well as the driving style recognition, to develop a more personalized advanced driver assistance system (ADAS) or intelligent vehicle. We use the graph convolutional networks for spatial feature reasoning and the LSTM networks with the attention mechanism for temporal motion feature learning within the image sequence to realize the driving secondary-task recognition. Moreover, aggressive drivers are more likely to be involved in traffic accidents, and the driving risk level of drivers could be affected by many potential factors, such as demographics and personality traits. Thus, we will focus on the driving style classification for the longitudinal car-following scenario. Also, based on the Structural Equation Model (SEM) andStrategic Highway Research Program 2 (SHRP 2) naturalistic driving database, the relationships among drivers' demographic characteristics, sensation seeking, risk perception, and risky driving behaviors are fully discussed. Results and conclusions from this short book are expected to offer potential guidance and benefits for promoting the development of intelligent vehicle technology and driving safety.