Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
in the system. Note that all these works rely on a trusted central server to coor-dinate the distributed learning process, which obviously becomes a single point of failure and can be subject to attacks. Only a couple of works like31 attempt to design decentralized multiparty learning systems. Note that only linear models are considered in31. To the best of our knowledge, secure decentralized multiparty learning with heterogeneous models remains an open and challenging problem. In this section, we propose a novel secure decentralized multiparty learning sys-tem by taking advantage of the blockchain technology, called BEMA. In particular, each party in a decentralized system broadcasts its local model, and meanwhile, processes the received (heard) models from other parties over his local dataset, and identifies the models that need to be calibrated. Following our designed pro-tocol, the party sends the calibration message to the corresponding parties. In so doing, the parties in the system do not need to share their whole dataset with other parties. In this system, we consider two types of Byzantine attacks in the system, which can occur in model broadcasting and model calibration processes. To pro-tect system security, we carefully design "off-chain sample mining" and "on-chain