Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Equations occur in many computer applications, such as symbolic compu- tation, functional programming, abstract data type specifications, program verification, program synthesis, and automated theorem proving. Rewrite systems are directed equations used to compute by replacing subterms in a given formula by equal terms until a simplest form possible, called a normal form, is obtained. The theory of rewriting is concerned with the compu- tation of normal forms. We shall study the use of rewrite techniques for reasoning about equations. Reasoning about equations may, for instance, involve deciding whether an equation is a logical consequence of a given set of equational axioms. Convergent rewrite systems are those for which the rewriting process de- fines unique normal forms. They can be thought of as non-deterministic functional programs and provide reasonably efficient decision procedures for the underlying equational theories. The Knuth-Bendix completion method provides a means of testing for convergence and can often be used to con- struct convergent rewrite systems from non-convergent ones. We develop a proof-theoretic framework for studying completion and related rewrite- based proof procedures. We shall view theorem provers as proof transformation procedures, so as to express their essential properties as proof normalization theorems.