Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Since the introduction of the functional classes HW (lI) and WT HW (lI) and their peri- odic analogs Hw (1I') and (1I'), defined by a concave majorant w of functions and their rth derivatives, many researchers have contributed to the area of ex- tremal problems and approximation of these classes by algebraic or trigonometric polynomials, splines and other finite dimensional subspaces. In many extremal problems in the Sobolev class W (lI) and its periodic ana- log W (1I') an exceptional role belongs to the polynomial perfect splines of degree r, i.e. the functions whose rth derivative takes on the values -1 and 1 on the neighbor- ing intervals. For example, these functions turn out to be extremal in such problems of approximation theory as the best approximation of classes W (lI) and W (1I') by finite-dimensional subspaces and the problem of sharp Kolmogorov inequalities for intermediate derivatives of functions from W . Therefore, no advance in the T exact and complete solution of problems in the nonperiodic classes W HW could be expected without finding analogs of polynomial perfect splines in WT HW .