•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Algèbre
  7. Chromatic polynomials and chromaticity of some linear h-hypergraphs

Chromatic polynomials and chromaticity of some linear h-hypergraphs

Muhammad Kashif
Livre broché | Anglais
48,45 €
+ 96 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

For a century, one of the most famous problems in mathematics was to prove the four-color theorem.In 1912, George Birkhoff proposed a way to tackling the four-color conjecture by introduce a function P(M, t), defined for all positive integer t, to be the number of proper t-colorings of a map M. This function P(M, t)in fact a polynomial in t is called chromatic polynomial of M. If one could prove that P(M, 4)>0 for all maps M, then this would give a positive answer to the four-color problem. In this book, we have proved the following results: (1)Recursive form of the chromatic polynomials of hypertree, Centipede hypergraph, elementary cycle, Sunlet hypergraph, Pan hypergraph, Duth Windmill hypergraph, Multibridge hypergraph, Generalized Hyper-Fan, Hyper-Fan, Generalized Hyper-Ladder and Hyper-Ladder and also prove that these hypergraphs are not chromatically uniquein the class of sperenian hypergraphs. (2)Tree form and Null graph representation of the chromatic polynomials of elementary cycle, uni-cyclic hypergraph and sunflower hypergrpah. (3)Generalization of a result proved by Read for graphs to hypergraphs and prove that these kinds of hypergraphs are not chromatically unique.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
120
Langue:
Anglais

Caractéristiques

EAN:
9783639348231
Date de parution :
08-04-11
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
152 mm x 229 mm
Poids :
185 g

Les avis