Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Dieses Buch führt ein in die grundlegenden Ansätze des Clusterns, Segmentierens und der Faktorextraktion. Kapitel 1 führt ein in die Clusteranalyse. Nach einem intuitiven Beispiel anhand des Clusterns von Muscheln am Strand, und dem zugrundeliegenden, oft unausgesprochenen Cluster-Prinzipien werden u.a. die hierarchische, partitionierende und das TwoStep-Verfahren vorgestellt. Bei der hierarchischen Clusteranalyse (CLUSTER) werden die diversen Maße (z.B. quadrierte euklidische Distanz, Pearson-Korrelation, Chi²-Maß etc.) und die jeweiligen Algorithmen (Density, Linkage, Ward etc.) einschl. ihrer Bias (z.B. Ausreißer, Chaining) erläutert. Anhand zahlreicher Beispiele wird erläutert, wie Intervalldaten, Häufigkeiten, Kategorialdaten, sowie gemischte Daten geclustert werden. Bei der partitionierenden Clusterzentrenanalyse (k-means, QUICK CLUSTER) lernen Sie Teststatistiken zur Bestimmung der optimalen Clusterzahl kennen (z.B. Eta², F-max; nicht im original SPSS Leistungsumfang enthalten), sowie die ausgewählte Clusterlösung auf Interpretierbarkeit, Stabilität und Validität zu prüfen. Bei der Two-Step Clusteranalyse (TWOSTEP CLUSTER) lernen Sie die Clusterung von gemischten Daten anhand eines Scoring-Algorithmus kennen Darüber hinaus lernen Sie Kriterien für die Beurteilung einer guten Clusterlösung kennen, wie auch alternative grafische und logische Ansätze zur Clusterung von auch Daten im String-Format. Kapitel 2 führt ein in die Gruppe der Faktorenanalyse mit SPSS. Die Faktorenanalyse (factor analysis, FA) ist ein Sammelbegriff für verschiedene Verfahren, die es ermöglichen, aus einer großen Zahl von Variablen eine möglichst geringe Anzahl von (nicht beobachteten) 'Faktoren' zu erhalten ('extrahieren'). Die Faktorenanalyse geht nicht von unabhängigen oder abhängigen Variablen aus, sondern behandelt alle Analysevariablen unabhängig von einem Kausalitätsstatus. Dieser Kurs führt in das Grundprinzip und Varianten der Faktorenanalyse (z.B. Alpha, Hauptfaktoren, Hauptkomponenten), die wichtigsten Extraktions-, wie auch Rotationsmethoden (z.B. orthogonal vs. oblique) und ihre Funktion. Vorgestellt werden Kriterien zur Bestimmung, Interpretation und Benennung der Faktoren. Dieser Kurs stellt ausschließlich die Variante der explorativen Faktorenanalyse (EFA) vor (R-Typ). Abschliessend werden eine Faktorenanalyse für Fälle (Q-Typ Faktorenanalyse vorgestellt, sowie eine Matrix-Variante, die dann zum Einsatz kommen kann, wenn die korrelationsanalytischen Voraussetzungen der Faktorenanalyse nicht erfüllt sind. Die Überprüfung der Voraussetzungen und die Interpretation der Statistiken werden an zahlreichen Beispielen geübt. Kapitel 3 stellt die Diskriminanzanalyse (DA, syn.: DFA, Diskriminanzfunktionsanalyse) vor. Das zentrale Ziel dieses Ansatzes ist, die beste Trennung (Diskriminanz) zwischen den Zugehörigkeiten einer abhängigen Gruppenvariable für mehrere unabhängige Einflussvariablen zu finden. In anderen Worten, die Diskriminanzanalyse liefert die Antwort auf die Frage: Welche Kombination von Einflussvariablen erlaubt eine maximal trennende Aufteilung der Fälle in die bekannten Ausprägungen einer Gruppe? Weitere, damit in Zusammenhang stehende Fragen können sein: Auf welche Weise werden die Fälle klassiert, wie genau werden die Fälle klassiert (erkennbar an der Anzahl der Fehlklassifikationen), und wie sind die schlussendlich entstehenden Klassifizierungen zu interpretieren? Es werden u.a. diverse Methoden der Variablenselektion (direkt, schrittweise), sowie auch die Berechnung und Interpretation multipler schrittweiser Diskriminanzanalysen mit mehreren ermittelten Funktionen vorgestellt (einschliesslich Lambda, Box-Test, Kreuzvalidierung (Interpretation von Kovarianz-Matrizen), das Identifizieren von Multikollinearität, sowie Gebietskarten (Territorien). Weitere Kapitel stellen Möglichkeiten des Clusterns und Segmentierens (u.a. mit CLEMENTINE, Entscheidungsbäume und ausgewählte Cluster-Knoten. In einem abschließenden Kapitel sind ausgewählte Formeln der wichtigsten behandelten Verfahren zusammengestellt. Zahlreiche Rechenbeispiele werden von der Fragestellung, der Anforderung der einzelnen Statistiken (per Maus, per Syntax) bis hin zur Interpretation der SPSS- und CLEMENTINE Ausgaben systematisch durchgespielt. Auch auf mögliche Fallstricke und häufig begangene Fehler wird eingegangen. Separate Abschnitte stellen die diversen Voraussetzungen für die Durchführung der jeweiligen Analyse, sowie Ansätze zu ihrer Überprüfung zusammen. Dieses Buch ist angenehm verständlich und anwendungsorientiert geschrieben, ohne jedoch die Komplexität und damit erforderliche Tiefe bei der Vorstellung der Verfahren zu vernachlässigen. Dieses Buch ist für Einsteiger, Studierende, sowie fortgeschrittene Wissenschaftler in den Wirtschafts-, Bio-, und Sozialwissenschaften gleichermaßen geeignet.