•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Clustering Methodology for Symbolic Data

Lynne Billard, Edwin Diday
Livre relié | Anglais | Computational Statistics
131,95 €
+ 263 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Covers everything readers need to know about clustering methodology for symbolic data--including new methods and headings--while providing a focus on multi-valued list data, interval data and histogram data

This book presents all of the latest developments in the field of clustering methodology for symbolic data--paying special attention to the classification methodology for multi-valued list, interval-valued and histogram-valued data methodology, along with numerous worked examples. The book also offers an expansive discussion of data management techniques showing how to manage the large complex dataset into more manageable datasets ready for analyses.

Filled with examples, tables, figures, and case studies, Clustering Methodology for Symbolic Data begins by offering chapters on data management, distance measures, general clustering techniques, partitioning, divisive clustering, and agglomerative and pyramid clustering.

  • Provides new classification methodologies for histogram valued data reaching across many fields in data science
  • Demonstrates how to manage a large complex dataset into manageable datasets ready for analysis
  • Features very large contemporary datasets such as multi-valued list data, interval-valued data, and histogram-valued data
  • Considers classification models by dynamical clustering
  • Features a supporting website hosting relevant data sets

Clustering Methodology for Symbolic Data will appeal to practitioners of symbolic data analysis, such as statisticians and economists within the public sectors. It will also be of interest to postgraduate students of, and researchers within, web mining, text mining and bioengineering.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
352
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9780470713938
Date de parution :
28-10-19
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
155 mm x 231 mm
Poids :
612 g

Les avis