Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This book is devoted to the subject commonly called Chaotic Dynamics, namely the study of complicated behavior in time of maps and ?ows, called dynamical systems. The theory of chaotic dynamics has a deep impact on our understanding of - ture, and we sketch here our view on this question. The strength of this theory comes from its generality, in that it is not limited to a particular equation or scienti?c - main. It should be viewed as a conceptual framework with which one can capture properties of systems with complicated behavior. Obviously, such a general fra- work cannot describe a system down to its most intricate details, but it is a useful and important guideline on how a certain kind of complex systems may be understood and analyzed. The theory is based on a description of idealized systems, such as "hyperbolic" systems. The systems to which the theory applies should be similar to these idealized systems. They should correspond to a ?xed evolution equation, which, however, need to be neither modeled nor explicitly known in detail. Experimentally, this means that the conditions under which the experiment is performed should be as constant as possible. The same condition applies to analysis of data, which, say, come from the evolution of glaciations: One cannot apply "chaos theory" to systems under varying external conditions, but only to systems which have some self-generated chaos under ?xed external conditions.