•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Data-Driven Fault Diagnosis for Complex Industrial Processes

Towards Fault Prediction, Detection and Identification

Hongpeng Yin, Han Zhou, Yi Chai, Qiu Tang
Livre relié | Anglais | Engineering Applications of Computational Methods | n° 22
168,95 €
+ 337 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book summarizes techniques of fault prediction, detection, and identification, all included specifically in the data-driven fault diagnosis requirements within industrial processes, drawing from the combination of data science, machine learning, and domain-specific expertise. In the modern industrial processes, where efficiency, productivity, and safety stand as paramount pillars, the pursuit of fault diagnosis has become more crucial than ever. The widespread use of computer systems, along with new sensor hardware, generates significant quantities of real-time process data. It has been frequently asked what could be done with both the real-time and archived historical data, to not only promising efficiency but providing prospect of a brighter, more resilient future. This book starts with the definition, related work, and open test-bed for industrial process fault diagnosis. Then, it presents several data-driven methods on fault prediction (Part I), fault detection (Part II), and fault diagnosis (Part III), with consideration of properties of industrial processes, such as varying operation modes, non-Gaussian, nonlinearity. It distills cutting-edge methodologies and insights which may inspire for industrial practitioners, researchers, and academicians alike.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
202
Langue:
Anglais
Collection :
Tome:
n° 22

Caractéristiques

EAN:
9789819631520
Format:
Livre relié
Dimensions :
155 mm x 235 mm

Les avis