Nos liseuses Vivlio rencontrent actuellement des problèmes de synchronisation. Nous faisons tout notre possible pour résoudre ce problème le plus rapidement possible. Toutes nos excuses pour la gêne occasionnée !
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Nos liseuses Vivlio rencontrent actuellement des problèmes de synchronisation. Nous faisons tout notre possible pour résoudre ce problème le plus rapidement possible. Toutes nos excuses pour la gêne occasionnée !
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Deep Credit Risk

Machine Learning with Python

Harald Scheule, Daniel Rösch
Livre broché | Anglais
69,95 €
+ 139 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Deep Credit Risk - Machine Learning in Python aims at starters and pros alike to enable you to: - Understand the role of liquidity, equity and many other key banking features- Engineer and select features- Predict defaults, payoffs, loss rates and exposures- Predict downturn and crisis outcomes using pre-crisis features- Understand the implications of COVID-19- Apply innovative sampling techniques for model training and validation- Deep-learn from Logit Classifiers to Random Forests and Neural Networks- Do unsupervised Clustering, Principal Components and Bayesian Techniques- Build multi-period models for CECL, IFRS 9 and CCAR- Build credit portfolio correlation models for VaR and Expected Shortfall- Run over 1,500 lines of pandas, statsmodels and scikit-learn Python code- Access real credit data and much more ...

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
470
Langue:
Anglais

Caractéristiques

EAN:
9798617590199
Date de parution :
24-06-20
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
191 mm x 235 mm
Poids :
798 g

Les avis