•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Technique
  6. Électronique
  7. Deep Reinforcement Learning for Wireless Communications and Networking

Deep Reinforcement Learning for Wireless Communications and Networking

Theory, Applications and Implementation

Dinh Thai Hoang, Nguyen Van Huynh, Diep N Nguyen, Ekram Hossain, Dusit Niyato
Livre relié | Anglais
183,45 €
+ 366 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Deep Reinforcement Learning for Wireless Communications and Networking

Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems

Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice. The book also covers diverse applications of DRL to address various problems in wireless networks, such as caching, offloading, resource sharing, and security. The authors discuss open issues by introducing some advanced DRL approaches to address emerging issues in wireless communications and networking.

Covering new advanced models of DRL, e.g., deep dueling architecture and generative adversarial networks, as well as emerging problems considered in wireless networks, e.g., ambient backscatter communication, intelligent reflecting surfaces and edge intelligence, this is the first comprehensive book studying applications of DRL for wireless networks that presents the state-of-the-art research in architecture, protocol, and application design.

Deep Reinforcement Learning for Wireless Communications and Networking covers specific topics such as:

  • Deep reinforcement learning models, covering deep learning, deep reinforcement learning, and models of deep reinforcement learning
  • Physical layer applications covering signal detection, decoding, and beamforming, power and rate control, and physical-layer security
  • Medium access control (MAC) layer applications, covering resource allocation, channel access, and user/cell association
  • Network layer applications, covering traffic routing, network classification, and network slicing

With comprehensive coverage of an exciting and noteworthy new technology, Deep Reinforcement Learning for Wireless Communications and Networking is an essential learning resource for researchers and communications engineers, along with developers and entrepreneurs in autonomous systems, who wish to harness this technology in practical applications.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
288
Langue:
Anglais

Caractéristiques

EAN:
9781119873679
Date de parution :
25-07-23
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
152 mm x 229 mm
Poids :
553 g

Les avis