•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Design Patterns für Machine Learning

Entwurfsmuster für Datenaufbereitung, Modellbildung und MLOps - Best Practices für die gesamte ML-Pipeline

Valliappa Lakshmanan, Sara Robinson, Michael Munn
Livre broché | Allemand | Animals
44,45 €
+ 88 points
Format
Date de disponibilité inconnue
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

  • Behandelt alle Phasen der ML-Produktpipeline
  • Klar strukturierter Aufbau, der dafür sorgt, dass sich Konzepte und Zusammenhänge rasch erschließen
  • Fokus auf TensorFlow, aber auch übertragbar auf PyTorch-Projekte

Die Design Patterns in diesem Buch zeigen praxiserprobte Lösungen für wiederkehrende Aufgaben im Machine Learning. Die Autor:innen - ML-Experten bei Google - beschreiben Methoden, die Data Scientists helfen, typische Probleme im gesamten ML-Prozess zu bewältigen. Die Entwurfsmuster verdichten die Erfahrungen von Hunderten von Expert:innen zu klar strukturierten, zugänglichen Best Practices.

Das Buch bietet detaillierte Erläuterungen zu 30 Mustern für die Daten- und Problemdarstellung, Operationalisierung, Wiederholbarkeit, Reproduzierbarkeit, Flexibilität, Erklärbarkeit und Fairness. Zu jedem Muster erhalten Sie eine Beschreibung des Problems, eine Vielzahl möglicher Lösungen sowie Empfehlungen, welche Technik die beste für Ihre Problemstellung ist.

Erfahren Sie, wie Sie:

  • Herausforderungen beim Trainieren, Bewerten und Deployen von ML-Modellen erkennen und überwinden
  • Daten für verschiedene ML-Modelltypen mit Einbettungen, Feature Crosses und mehr darstellen
  • den richtigen Modelltyp für bestimmte Fragestellungen auswählen
  • eine robuste Trainingsschleife mit Checkpoints, Verteilungsstrategie und Hyperparameter-Tuning erstellen
  • skalierbare ML-Systeme deployen, die bei erneutem Training aktuelle Daten berücksichtigen
  • Modellvorhersagen für Stakeholder interpretieren
  • Modellgenauigkeit, Reproduzierbarkeit, Resilienz und Fairness verbessern

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
432
Langue:
Allemand
Collection :

Caractéristiques

EAN:
9783960091646
Date de parution :
09-11-21
Format:
Livre broché
Dimensions :
168 mm x 25 mm
Poids :
782 g

Les avis