•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Detecting Regime Change in Computational Finance

Data Science, Machine Learning and Algorithmic Trading

Jun Chen, Edward P K Tsang
Livre broché | Anglais
91,95 €
+ 183 points
Format
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics:

  • Data science: as an alternative to time series, price movements in a market can be summarised as directional changes
  • Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model
  • Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change
  • Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed
  • Algorithmic trading: regime tracking information can help us to design trading algorithms

It will be of great interest to researchers in computational finance, machine learning and data science.

About the Authors

Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.

Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
138
Langue:
Anglais

Caractéristiques

EAN:
9780367540951
Date de parution :
30-05-22
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
240 g

Les avis