Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
L'exploration de données est un processus qui consiste à extraire des informations cachées et utiles des données. La détection des valeurs aberrantes est une partie fondamentale de l'exploration de données et a récemment fait l'objet d'une attention considérable de la part de la communauté des chercheurs. Une valeur aberrante est un objet de données qui s'écarte des autres observations. La détection des valeurs aberrantes a des applications importantes dans le nettoyage des données ainsi que dans l'extraction de points anormaux pour la détection de la fraude, l'analyse du marché boursier, la détection des intrusions, le marketing, les capteurs de réseau. La plupart des efforts de recherche existants se concentrent sur les ensembles de données numériques qui ne sont pas directement applicables aux ensembles de données catégorielles où l'ordre des données et le calcul des distances entre les points de données ont peu de sens. En outre, un certain nombre de méthodes actuelles de détection des valeurs aberrantes nécessitent un temps quadratique par rapport à la taille de l'ensemble de données et nécessitent généralement des analyses multiples des données; ces caractéristiques ne sont pas souhaitables lorsque les ensembles de données sont volumineux. Cette thèse se concentre et évalue, expérimentalement, une approche de détection des aberrations qui est orientée vers les ensembles catégoriels. En outre, il s'agit d'un algorithme de détection de valeurs aberrantes simple, évolutif et efficace qui a l'avantage de découvrir les valeurs aberrantes dans des ensembles de données catégoriques ou numériques en per