•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Mathématiques appliquées
  7. Dynamics and Mission Design Near Libration Points - Vol II: Fundamentals: The Case of Triangular Libration Points

Dynamics and Mission Design Near Libration Points - Vol II: Fundamentals: The Case of Triangular Libration Points

Gerard Gomez, Jaume Llibre, R Martinez, Carles Simo
Livre relié | Anglais | World Scientific Monograph Mathematics | n° 3
115,45 €
+ 230 points
Livraison 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

It is well known that the restricted three-body problem has triangular equilibrium points. These points are linearly stable for values of the mass parameter, μ, below Routh's critical value, μ1. It is also known that in the spatial case they are nonlinearly stable, not for all the initial conditions in a neighborhood of the equilibrium points L4, L5 but for a set of relatively large measures. This follows from the celebrated Kolmogorov-Arnold-Moser theorem. In fact there are neighborhoods of computable size for which one obtains "practical stability" in the sense that the massless particle remains close to the equilibrium point for a big time interval (some millions of years, for example).According to the literature, what has been done in the problem follows two approaches: (a) numerical simulations of more or less accurate models of the real solar system; (b) study of periodic or quasi-periodic orbits of some much simpler problem.The concrete questions that are studied in this volume are: (a) Is there some orbit of the real solar system which looks like the periodic orbits of the second approach? (That is, are there orbits performing revolutions around L4 covering eventually a thick strip? Furthermore, it would be good if those orbits turn out to be quasi-periodic. However, there is no guarantee that such orbits exist or will be quasi-periodic). (b) If the orbit of (a) exists and two particles (spacecraft) are put close to it, how do the mutual distance and orientation change with time?As a final conclusion of the work, there is evidence that orbits moving in a somewhat big annulus around L4 and L5 exist, that these orbits have small components out of the plane of the Earth-Moon system, and that they are at most mildly unstable.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
160
Langue:
Anglais
Collection :
Tome:
n° 3

Caractéristiques

EAN:
9789810242749
Date de parution :
12-02-01
Format:
Livre relié
Format numérique:
Genaaid

Les avis