•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Effective Statistical Learning Methods for Actuaries II EBOOK

Tree-Based Methods and Extensions

Michel Denuit, Donatien Hainaut, Julien Trufin
Ebook | Anglais | Springer Actuarial
52,99 €
+ 52 points
Format
Disponible immédiatement
Passer une commande en un clic
Payer en toute sécurité

Description

This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities.



The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, master's students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful.



This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurancedata analytics with applications to P&C, life and health insurance.


Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
228
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783030575564
Date de parution :
15-11-20
Format:
Ebook
Protection digitale:
Adobe DRM
Format numérique:
ePub

Les avis