Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Retrait gratuit dans votre magasin Club
7.000.000 titres dans notre catalogue
Payer en toute sécurité
Toujours un magasin près de chez vous
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Es bezeichne Si die multiplikative Gruppe der komplexen Zahlen vom Betrag 1 und 2 L (Si) den zum Lebesgue-Maß konstruierten komplexen Hilbert-Raum über Si. 2 Jedem Punkt SES ist ein Translationsoperator y(s) von L (Sl) in sich zugeordnet, l 2 welcher! E L (Si) in z - !(S-l z) überführt. Die Abbildung S - y (s) ist eine Darstellung der Gruppe Si. Betrachtet man die jedem! E U (S 1) zugeordnete F ourier- Reihe L C zn, so erhält man eine Zerlegung von U(Sl) in die eindimensionalen n neZ Untervektorräume (Hn)nez, die aus allen komplexen Vielfachen der Funktionen z - z" bestehen. Auf jedem der Räume (Hn)nez operieren die linearen Abbildungen (y(s)seSI irreduzibel. Das Entwickeln in Fourier-Reihen kann demnach als Zerlegen der Darstellung y in irreduzible Teildarstellungen aufgefaßt werden. Diese zunächst ungewohnte Sicht der Fourier-Reihen hat sich als sehr fruchtbar erwiesen. Nach heutiger Erkenntnis besteht das Hauptproblem der harmonischen Analyse in der Zerlegung linearer Gruppendarstellungen in "elementare" Teildarstellungen. Mit Hilfe dieser Abstraktion erhält die Theorie der Fourier-Reihen, der Fourier-Integrale und der Entwicklungen nach einer großen Klasse spezieller Funktionen einen gemeinsamen Rahmen. Zugleich wird deutlich, warum die Theorie der Fourier-Reihen aus dieser Sicht von relativ elementarem Charakter ist: Die Kommutativität der Gruppe Si impliziert die Eindimensionalität der Vektorräume (Hn)nez. Das vorliegende Buch soll in die harmonische Analyse unter Betonung des gruppentheoretischen Standpunktes einführen.