Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Predictive musculoskeletal models have the potential to positively influence the orthopaedic management of movement pathologies. A scalable geometric model of the lower-body was defined from an adult database. A Hill-type EMG driven dynamic computational muscle model was developed and validated against published and new experimental data. A lower-body simulation model was constructed incorporating skeletal joint definitions, musculotendon actuators, passive joint dynamics and ground reactions forces. A 13-muscle EMG driven inverse-kinetic simulation model of knee flexion-extension contraction was developed and evaluated using dynamometric data covering a wide- range of contraction speeds and modes (isokinetic, isotonic, eccentric, and isometric) for five able- bodied adult male subjects. Both shape and transfer function based Hill-type muscle models were evaluated. For the transfer function-based model, across all subjects the average correlations ranged between r = 0.61-0.77 and average RMS error = 21- 29%. For the shape function-based model, the average correlations ranged between r = 0.76-0.92 and an average RMS error = 25-31%.