Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Consider the Hamiltonian action of a compact Lie group on a symplectic manifold which has the strong Lefschetz property. We first establish an equivariant version of the Merkulov-Guillemin dδ-lemma, and an improved version of the Kirwan-Ginzburg equivariant formality theorem, which says that every cohomology class has a canonical equivariant extension. We then proceed to extend the equivariant dδ-lemma to equivariant differential forms with generalized coefficients. Finally we investigate the subtle differences between an equivariant Kaehler manifold and a Hamiltonian symplectic manifold with the strong Lefscehtz property. Among other things, we construct six-dimensional compact non-Kaehler Hamiltonian circle manifolds which each satisfy the Hard Lefschetz property, but nevertheless each have a symplectic quotient which does not satisfy the strong Lefschetz property. As an aside we prove that the strong Lefschetz property, unlike that of equivariant Kaehler condition, does not guarantee the Duistermaat-Heckman function to be log-concave.