•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Géométrie
  7. Equivariant Symplectic Hodge Theory and Strong Lefschetz Manifolds

Equivariant Symplectic Hodge Theory and Strong Lefschetz Manifolds

A study of Hamiltonian symplectic geometry from a Hodge theoretic point of view

Yi Lin
Livre broché | Anglais
48,45 €
+ 96 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Consider the Hamiltonian action of a compact Lie group on a symplectic manifold which has the strong Lefschetz property. We first establish an equivariant version of the Merkulov-Guillemin dδ-lemma, and an improved version of the Kirwan-Ginzburg equivariant formality theorem, which says that every cohomology class has a canonical equivariant extension. We then proceed to extend the equivariant dδ-lemma to equivariant differential forms with generalized coefficients. Finally we investigate the subtle differences between an equivariant Kaehler manifold and a Hamiltonian symplectic manifold with the strong Lefscehtz property. Among other things, we construct six-dimensional compact non-Kaehler Hamiltonian circle manifolds which each satisfy the Hard Lefschetz property, but nevertheless each have a symplectic quotient which does not satisfy the strong Lefschetz property. As an aside we prove that the strong Lefschetz property, unlike that of equivariant Kaehler condition, does not guarantee the Duistermaat-Heckman function to be log-concave.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
88
Langue:
Anglais

Caractéristiques

EAN:
9783838318356
Date de parution :
02-06-10
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
152 mm x 229 mm
Poids :
140 g

Les avis