•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences humaines & sociales
  5. Sociologie
  6. Population
  7. Evolution of Biological Systems in Random Media: Limit Theorems and Stability

Evolution of Biological Systems in Random Media: Limit Theorems and Stability

Anatoly Swishchuk, Jianhong Wu
Livre relié | Anglais | Mathematical Modelling: Theory and Applications | n° 18
132,95 €
+ 265 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

The book is devoted to the study of limit theorems and stability of evolving biologieal systems of "particles" in random environment. Here the term "particle" is used broadly to include moleculas in the infected individuals considered in epidemie models, species in logistie growth models, age classes of population in demographics models, to name a few. The evolution of these biological systems is usually described by difference or differential equations in a given space X of the following type and dxt/dt = g(Xt, y), here, the vector x describes the state of the considered system, 9 specifies how the system's states are evolved in time (discrete or continuous), and the parameter y describes the change ofthe environment. For example, in the discrete-time logistic growth model or the continuous-time logistic growth model dNt/dt = r(y)Nt(l-Nt/K(y)), N or Nt is the population of the species at time n or t, r(y) is the per capita n birth rate, and K(y) is the carrying capacity of the environment, we naturally have X = R, X == Nn(X == Nt), g(x, y) = r(y)x(l-xl K(y)), xE X. Note that n t for a predator-prey model and for some epidemie models, we will have that X = 2 3 R and X = R, respectively. In th case of logistic growth models, parameters r(y) and K(y) normaIly depend on some random variable y.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
218
Langue:
Anglais
Collection :
Tome:
n° 18

Caractéristiques

EAN:
9781402015540
Date de parution :
31-10-03
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
165 mm x 248 mm
Poids :
503 g

Les avis