•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Savoirs
  4. Informatique
  5. Sciences informatiques
  6. Intelligence artificielle
  7. Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances

Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances

Yanan Sun, Gary G Yen, Mengjie Zhang
Livre broché | Anglais | Studies in Computational Intelligence | n° 1070
126,95 €
+ 253 points
Format
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book systematically narrates the fundamentals, methods, and recent advances of evolutionary deep neural architecture search chapter by chapter. This will provide the target readers with sufficient details learning from scratch. In particular, the method parts are devoted to the architecture search of unsupervised and supervised deep neural networks. The people, who would like to use deep neural networks but have no/limited expertise in manually designing the optimal deep architectures, will be the main audience. This may include the researchers who focus on developing novel evolutionary deep architecture search methods for general tasks, the students who would like to study the knowledge related to evolutionary deep neural architecture search and perform related research in the future, and the practitioners from the fields of computer vision, natural language processing, and others where the deep neural networks have been successfully and largely used in their respective fields.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
331
Langue:
Anglais
Collection :
Tome:
n° 1070

Caractéristiques

EAN:
9783031168703
Date de parution :
10-11-23
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
485 g

Les avis