Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Development of models with explicit mechanisms for data generation from cluster structures is of major interest in order to provide a theoretical framework for cluster structures found in data. Especially appealing in this regard are the so-called typological structures in which observed entities relate in various degrees to one or several prototypes. Such structures are relevant in many areas such as medicine or marketing, where any entity (patient/consumer) may adhere, with different degrees, to one or several prototypes (clinical scenario/consumer behavior), modelling a typological classification. In fuzzy clustering, the fuzzy c-means (FCM) method has become one of the most popular techniques. As a fuzzy analogue of c-means crisp clustering, FCM models a typological classification, much the same way as c-means. However, FCM does not adhere to the statistical paradigm at which the data are considered generated by a cluster structure, while crisp c-means does. The present work proposes a framework for typological classification based on a fuzzy clustering model of data generation.