Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In diesem Buch wird ein ziemlich junges Gebiet der algebraischen Zahlentheorie behandelt. Es geht um die algebraische Theorie der p-Erweiterungen, die sich in den letzten 25 Jahren entwickelte und jetzt einen Vollkommenheitsgrad erreicht hat, welcher eine systematische Darstellung im hochsten MaBe wiinschenswert erscheinen HiBt. Diese Richtung in der Arithmetik beschiiftigt sich mit der Theorie der endlichen Erweiterungen von Korpem arithmetischen Typs. Das sind die . )J-adischen Zahl- korper, die Korper der formalen Potenzreihen mit endlichen Konstantenkorpem, die algebraischen Zahlkorper und die algebraischen Funktionenkorper in einer Unbestimmten mit endlichem Konstantenkorper. Ihr Hauptziel besteht darin, tiber die Informationen hinauszugelangen, welche die klassische Klassenkorpertheorie liefert, die bekanntlich einen Dberblick tiber die Erweiterungen mit kommutativer Galoisscher Gruppe gibt. Die KommutativiHit der Galoisschen Gruppe ist dabei sehr wesentlich. Die Klassenkorpertheorie ist dadurch ideenmaBig eng verbunden mit einem weiten Kreis mathematischer Theorien: von der Theorie der Radikal- erweiterungen (die jetzt als Kummersche Theorie bezeichnet wird) bis zu topologischen Dualitatssatzen, der Theorie der abelschen und harmonischen Integrale und den Picard-Mannigfaltigkeiten. Die gruppentheoretische Grundlage aller dieser Fragen ist die Pontrjagin-Dualitat kommutativer Gruppen und ihrer Charaktergruppen. Es ist dies der Tell der Mathematik, den A. WElL als "abelsche Mathematik" bezeichnet hat. Bekanntlich ging HILBERT beim Aufbau der Klassenkorpertheorie von der Analogie zwischen algebraischen Zahl-und Funktionenkorpem, d. h. den Korpem der mero- morphen Funktionen auf kompakten Riemannschen Flachen, aus. Von diesem Gesichtspunkt aus muB eine "nichtkommutative" Verallgemeinerung der Klassen- korpertheorie der Untersuchung der Fundamentalgruppe einer Riemannschen Flache entsprechen, die bekanntlich nichtkommutativ ist.