Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In der Reihe "TEUBNER-ARCHIV zur Mathematik" werden bedeutende klassische Arbeiten kommentiert, mit aktuellen Anmerkungen versehen und durch Literaturhin- weise ergiinzt. Dieser erste Band enthillt fotomechanische Nachdrucke von vier Beitragen der Mathe- matiker C. F. GAUSS, B. RIEMANN und H. MINKOWSKI. Diese Arbeiten waren grund- legend filr die Entwicklung und Weiterentwicklung der Differentialgeometrie als innere Geometrie bis zur allgemeinen Rel, ativitatstheorie. Es ist gewiB nicht nur ein Zufall, daB sich filr diese drei Manner die produktive Zeit des Wirkens auf dem genannten Gebiet der Geometrie in der Universitiitsstadt Gottingen vollzog. Durch die folgenden Satze ALBERT EINSTEINS aus seiner Abhandlung tiber die Grund- ztige der Relativitatstheorie aus dem Jahre 1922 lassen sich in einfacher und klarer Weise die diesbeztiglichen Verdienste dieser drei Mathematiker charakterisieren: "GAUSS hat in seiner Fliichentheorie die metrischen Eigenschaften einer in einem dreidimensionalen euklidischen Raum eingebetteten Fliiche untersucht und gezeigt, daB diese durch Begriffe beschrieben werden konnen, die sich nur auf die Flache selbst, nicht aber auf die Ein- bettung beziehen . . . RIEMANN dehnte den GauBschen Gedankengang auf Kontinua beliebiger Dimensionszahl aus; er hat die physikalische Bedeutung dieser Verallgemei- nerung der Geometrie EUKLIDS mit prophetischem Blick vorausgesehen . . . Durch die Einfilhrung der imaginiiren Zeitvariable X4 = it hat MINKOWSKI die Invariantentheorie des vierdimensionalen Kontinuums des physikalischen Geschehens der des dreidimen- sionalen Kontinuums des euklidischen Raumes vollig analog gemacht.