•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Generalized Linear Mixed Models

Modern Concepts, Methods and Applications

Walter W Stroup, Marina Ptukhina, Julie Garai
152,95 €
+ 305 points
Format
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Generalized Linear Mixed Models: Modern Concepts, Methods, and Applications (2nd edition) presents an updated introduction to linear modeling using the generalized linear mixed model (GLMM) as the overarching conceptual framework. For students new to statistical modeling, this book helps them see the big picture - linear modeling as broadly understood and its intimate connection with statistical design and mathematical statistics. For readers experienced in statistical practice, but new to GLMMs, the book provides a comprehensive introduction to GLMM methodology and its underlying theory.

Unlike textbooks that focus on classical linear models or generalized linear models or mixed models, this book covers all of the above as members of a unified GLMM family of linear models. In addition to essential theory and methodology, this book features a rich collection of examples using SAS(R) software to illustrate GLMM practice. This second edition is updated to reflect lessons learned and experience gained regarding best practices and modeling choices faced by GLMM practitioners. New to this edition are two chapters focusing on Bayesian methods for GLMMs.

Key Features:

  • Most statistical modeling books cover classical linear models or advanced generalized and mixed models; this book covers all members of the GLMM family - classical and advanced models
  • Incorporates lessons learned from experience and on-going research to provide up-to-date examples of best practices
  • Illustrates connections between statistical design and modeling: guidelines for translating study design into appropriate model and in-depth illustrations of how to implement these guidelines; use of GLMM methods to improve planning and design
  • Discusses the difference between marginal and conditional models, differences in the inference space they are intended to address and when each type of model is appropriate
  • In addition to likelihood-based frequentist estimation and inference, provides a brief introduction to Bayesian methods for GLMMs

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
648
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781498755566
Date de parution :
21-05-24
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
178 mm x 254 mm
Poids :
1369 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.