Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In modern data analysis, massive measurements from a network require novel signal processing techniques, which are expected to be adapted to the network topology, have distributed implementation, and are flexible enough for various applications. Graph signal processing (GSP) theories and techniques are geared towards these goals. GSP has seen rapid developments in recent years. Since its introduction around ten years ago, we have seen numerous new ideas and practical applications related to the field. In this monograph, an overview of recent advances in generalizing GSP is presented, with a focus on the extension to high-dimensional spaces, models, and structures. Alongside new frameworks proposed to tackle such problems, many new mathematical tools are introduced. In the first part of the monograph, traditional GSP is reviewed, challenges that it faces are highlighted, and efforts in overcoming such challenges are motivated. These efforts then become the theme for the rest of the publication. Included are the generalization of GSP to high dimensional vertex signal spaces, the theory of random shift operators and the wide-sense stationary (WSS) statistical signal models, and the treatment of high dimensionality in graph structures and generalized graph-like structures. The monograph concludes with an outline of possible future directions.