Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Obwohl man annehmen kann, daB das gerundete Rechnen so alt ist wie das Rechnen mit Zahlen iiberhaupt, hat es eine ausgedehnte und systematische Anwendung erst durch die neuzeitlichen Digitalrechenanlagen gefunden. Die zwangslliufige Begrenzung sowohl des Gesamtspeichers wie der Bitanzahl der einzelnen Speicherzellen und Register bedingt bei jeder Zahldarstellung eine Einschrlinkung eines theoretischen, idealisierten, unendlichen Zahlenbereiches auf eine endliche Teilmenge, in der die realen arithmetischen Operationen konstruktiv erfolgen. Infolgedessen stimmen die Regeln fiir dieses "gerundete" Rechnen im realen Bereich mit denen des Rechnens im idealen Bereich nicht iiberein und verschiedene der klassischen Eigenschaften arithmetischer Ver- kniipfungen, beispielsweise im Korper der rationalen Zahlen die Assoziativitlit und Distributivitlit, gehen bei Rundung verloren. Der gerundete Bereich sowie die konstruktiv auszufiihrenden arithmetischen Operationen sind natiirlich nicht Selbstzweck, sondem sie sollen in zu definierendem Sinne eine Approximation zunI idealen Bereich und zu den idealen arithmetischen Operationen darstellen. Seit einigen lahren bestehen nun Versuche und Teilergebnisse zu einer axio- matischen Begriindung und einer Theorie des gerundeten Rechnens. Diese bezie- hen sich einerseits auf die Konstruktionsvorschrift und deren Realisierung, nach der den idealen Zahlen bzw. einer konstruktiv darstellbaren Untermenge hier- von gerundete Zahlen zuzuordnen sind, urn gewisse Kriterien zu erfiiIlen, z. B. Minimisierung der Abweichung des Nliherungsergebnisses yom exakten Ergeb- nis bei Auswertung eines arithmetischen Ausdruckes mit verschiedenen Daten im statistischen Mittel, Ausgabe eines moglichst "kleinen" Zahlenbereiches, in dem das Ergebnis einer idealen Rechnung mit Sicherheit (Intervall-Arithmetik) oder mit vorgegebener Wahrscheinlichkeit liegt.