Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Algebra ist neben Analysis und Geometrie eine der tragenden Säulen der Schulmathe- matik und der Mathematik überhaupt. Wir haben in diesem Band versucht, eine Aus- wahl aus der klassischen Algebra und der elementaren Zahlentheorie zu treffen, die als Hintergrundinformation ftir den Mathematiklehrer am Gymnasium sinnvoll erscheint. Bei der ersten Bekanntschaft mit Algebra stehen das Zahlenrechnen und die Suche nach Lösungen ftir einfache Gleichungen im Vordergrund. Wir geben daher nach einer kurzen Darstellung der wichtigsten algebraischen Grundbegriffe einen vollständigen überblick über den Aufbau des Zahlsystems, wobei es uns darauf ankam, die Zahl- bereichserweiterungen als Spezialfall allgemeiner algebraischer Konstruktionen heraus- zuarbeiten. So zeigen wir die Gemeinsamkeiten bei der Konstruktion der ganzen und der rationalen Zahlen auf und gewinnen die reellen Zahlen und die komplexen Zahlen durch die allgemeinen Prozesse der Vervollständigung angeordneter Körper bzw. der Adjunktion von Nullstellen. Bei den Ausftihrungen über Gruppen legen wir besonderes Gewicht auf Beispiele ftir endliche Gruppen: Permutationsgruppen, Gruppen kleiner Ordnung, endliche Bewe- gungsgruppen der Ebene. Einen zentralen Platz nimmt die ausftihrliche Behandlung der Teilbarkeitslehre ein. Neben den Anwendungen bei ganzen Zahlen und Polynomen gehen wir exemplarisch auf die Zahlentheorie des Ringes der ganzen Gaußschen Zahlen ein und zeigen, wie sich zahlentheoretische Aussagen über diesen Ring in Aussagen über Quadratsummen natürlicher Zahlen übersetzen lassen.