•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Technique
  6. Électronique
  7. Hand Sign Recognition based on Myographic Methods and Random K-Tournament Grasshopper Extreme Learner

Hand Sign Recognition based on Myographic Methods and Random K-Tournament Grasshopper Extreme Learner

Rim Barioul
Livre broché | Anglais | Scientific Reports on Measurement and Sensor Technology | n° 17
21,95 €
+ 43 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Surface electromyography (sEMG), force myography (FMG) and surface electrical impedance myography (sEIM) are investigated for perspective wearable embedded systems. A database has been collected from more than 100 healthy subject performing American sign language (ASL). Classification methods have been proposed based on Extreme Learning Machine (ELM) supported by a grasshopper optimization algorithm (GOA) as a core weight pruning process. To ensure the GOA population diversity a K-tournament selection strategy is included. The K-Tournament Grasshopper Optimization Algorithm (KTGOA) has been improved for discrete optimization problems and implemented to select the ELM weights as a K-Tournament Grasshopper Extreme Learner (KTGEL). To improve the balance of exploration and exploitation, the balancing coefficients of the KTGEL are subjected to uniform randomization. The resulting Random K-Tournament Grasshopper Extreme Learner (RKTGEL) is a novel classifier with a simultaneously automated feature selection. The number of sensors and their positions have been investigated: For FMG, 8 sensors, for sEMG, 2 sensors and for sEIM, 4 equidistant electrodes for measurements in the frequencies from 1 kHz to 4 kHz, are suitable. Combinations of myographic methods reach an accuracy of 100% for small and medium ambiguous datasets. For high ambiguity, a targeted reduction of ambiguity by excluding signs with a high similarity results the RKTGEL to reach an overall accuracy of 97%.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
242
Langue:
Anglais
Collection :
Tome:
n° 17

Caractéristiques

EAN:
9783961001477
Format:
Livre broché
Dimensions :
148 mm x 210 mm
Poids :
339 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.