Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Surface electromyography (sEMG), force myography (FMG) and surface electrical impedance myography (sEIM) are investigated for perspective wearable embedded systems. A database has been collected from more than 100 healthy subject performing American sign language (ASL). Classification methods have been proposed based on Extreme Learning Machine (ELM) supported by a grasshopper optimization algorithm (GOA) as a core weight pruning process. To ensure the GOA population diversity a K-tournament selection strategy is included. The K-Tournament Grasshopper Optimization Algorithm (KTGOA) has been improved for discrete optimization problems and implemented to select the ELM weights as a K-Tournament Grasshopper Extreme Learner (KTGEL). To improve the balance of exploration and exploitation, the balancing coefficients of the KTGEL are subjected to uniform randomization. The resulting Random K-Tournament Grasshopper Extreme Learner (RKTGEL) is a novel classifier with a simultaneously automated feature selection. The number of sensors and their positions have been investigated: For FMG, 8 sensors, for sEMG, 2 sensors and for sEIM, 4 equidistant electrodes for measurements in the frequencies from 1 kHz to 4 kHz, are suitable. Combinations of myographic methods reach an accuracy of 100% for small and medium ambiguous datasets. For high ambiguity, a targeted reduction of ambiguity by excluding signs with a high similarity results the RKTGEL to reach an overall accuracy of 97%.