Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The homology of analytic sheaves is a natural apparatus in the theory of duality on complex spaces. The corresponding apparatus in algebraic geometry was developed by Grothendieck in the fifties. In complex ana- lytic geometry the apparatus of homology was missing until recently, and in its stead the hypercohomology of complex sheaves (the hyper-Ext func- tors) and the Aleksandrov-Cech homology with coefficients in co- presheaves were used. The homology of analytic sheaves, sheaves of germs of homology and homology groups of analytic sheaves, were intro- duced and studied in the mid-seventies in a number of papers by the author. The main goal of this book is to give a systematic and detailed account of the homology theory of analytic sheaves and some of its applications to duality theory on complex spaces and to the theory of hyperfunctions. In order to read this book one must be acquainted with the foundations of ho- mological algebra and the theory of topological vector spaces. Only the most elementary concepts and results from the theory of functions of sev- eral complex variables are assumed to be known. The information needed about sheaves and complex spaces is recounted briefly at the beginning of the fIrst chapter. v. D. Golovin v CONTENTS Chapter 1. ANALYTIC SHEA YES .................................... 1 1. Prelirriinary Information .................................... 1 2. Injectivity Test................................................ 16 3. Local Duality . ....... ... ........ ....... ........... ... ... ..... 24 4. Injective and Global Dimension ........................... 36 5. Properties of Fine Sheaves ................................. 46 Chapter 2. HOMOLOGY THEORY ................................ " .. 63 1. Sheaves of Germs of Homology. . . . . . . . . . . . . . .. . . . . . . . . 63 . . .