•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

How Many Zeroes? EBOOK

Counting Solutions of Systems of Polynomials via Toric Geometry at Infinity

Pinaki Mondal
Ebook | Anglais | CMS/CAIMS Books in Mathematics
63,59 €
+ 63 points
Format
Disponible immédiatement
Passer une commande en un clic
Payer en toute sécurité

Description

This graduate textbook presents an approach through toric geometry to the problem of estimating the isolated solutions (counted with appropriate multiplicity) of n polynomial equations in n variables over an algebraically closed field. The text collects and synthesizes a number of works on Bernstein’s theorem of counting solutions of generic systems, ultimately presenting the theorem, commentary, and extensions in a comprehensive and coherent manner. It begins with Bernstein’s original theorem expressing solutions of generic systems in terms of the mixed volume of their Newton polytopes, including complete proofs of its recent extension to affine space and some applications to open problems. The text also applies the developed techniques to derive and generalize Kushnirenko's results on Milnor numbers of hypersurface singularities, which has served as a precursor to the development of toric geometry. Ultimately, the book aims to present material in an elementary format, developing all necessary algebraic geometry to provide a truly accessible overview suitable to second-year graduate students.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
352
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783030751746
Date de parution :
06-11-21
Format:
Ebook
Protection digitale:
Adobe DRM
Format numérique:
ePub

Les avis