Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Russell's paradox arises when we consider those sets that do not belong to themselves. The collection of such sets cannot constitute a set. Step back a bit. Logical formulas define sets (in a standard model). Formulas, being mathematical objects, can be thought of as sets themselves-mathematics reduces to set theory. Consider those formulas that do not belong to the set they define. The collection of such formulas is not definable by a formula, by the same argument that Russell used. This quickly gives Tarski's result on the undefinability of truth. Variations on the same idea yield the famous results of Gödel, Church, Rosser, and Post. This book gives a full presentation of the basic incompleteness and undecidability theorems of mathematical logic in the framework of set theory. Corresponding results for arithmetic follow easily, and are also given. Gödel numbering is generally avoided, except when an explicit connection is made between set theory and arithmetic. The book assumes little technical background from the reader. One needs mathematical ability, a general familiarity with formal logic, and an understanding of the completeness theorem, though not its proof. All else is developed and formally proved, from Tarski's Theorem to Gödel's Second Incompleteness Theorem. Exercises are scattered throughout.