•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Calcul
  7. Instability and Non-Uniqueness for the 2D Euler Equations, After M. Vishik

Instability and Non-Uniqueness for the 2D Euler Equations, After M. Vishik

Camillo De Lellis, Elia Brué, Dallas Albritton, Maria Colombo, Vikram Giri, Maximilian Janisch, Hyunju Kwon
Livre broché | Anglais | Annals of Mathematics Studies | n° 219
120,95 €
+ 241 points
Format
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

An essential companion to M. Vishik's groundbreaking work in fluid mechanics

The incompressible Euler equations are a system of partial differential equations introduced by Leonhard Euler more than 250 years ago to describe the motion of an inviscid incompressible fluid. These equations can be derived from the classical conservations laws of mass and momentum under some very idealized assumptions. While they look simple compared to many other equations of mathematical physics, several fundamental mathematical questions about them are still unanswered. One is under which assumptions it can be rigorously proved that they determine the evolution of the fluid once we know its initial state and the forces acting on it. This book addresses a well-known case of this question in two space dimensions. Following the pioneering ideas of M. Vishik, the authors explain in detail the optimality of a celebrated theorem of V. Yudovich from the 1960s, which states that, in the vorticity formulation, the solution is unique if the initial vorticity and the acting force are bounded. In particular, the authors show that Yudovich's theorem cannot be generalized to the L^p setting.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
148
Langue:
Anglais
Collection :
Tome:
n° 219

Caractéristiques

EAN:
9780691257532
Date de parution :
13-02-24
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
222 g

Les avis