Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Driven by the large absolute bandwidths that are available at the sub-mm-wave frequency range around 300 GHz, wireless high-data-rate communication systems and high-resolution imaging applications are being extensively investigated in recent years. Due to their superior characteristics in terms of noise figure and cutoff frequencies, InGaAs-channel HEMT devices have proven to be a key technology to implement the required active front-end MMICs for these wireless THz systems, enabling ultra-high bandwidths and state-of-the-art noise performance. This work describes the modeling, design, and characterization of 300-GHz HEMT-based power amplifier cells and demonstrates the implementation of highly compact amplifier MMICs and broadband waveguide modules. These amplifiers are key components for the implementation of high-performance chipsets for wireless THz systems, providing high output power for the utilization of next-generation communication and imaging applications. A unique amplifier topology based on multi-finger cascode and common-source devices is developed and evaluated, demonstrating more than 20-mW measured output power at the sub-mm-wave frequency range around 300 GHz.